

BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

> THILMANY LLC Lime Kiln Emission Test at Kaukauna, WI

> > August 28, 20102 P.O.# 138079 OS

Prepared by:

BADGER LABORATORIES & ENGINEERING 501 W. Bell Street Neenah, WI 54956

October 1, 2012

Bruce F. Lamers Project Manager

Bruce F James

Jeffery M. Wagner Chief Chemist

II. Summary of Results

Particulate & NOx Emission Results 8/28/10

Test	Volumetric Flow Rate	Isokinetic	Particulate]	NOx Emission		
Run	dscfm	Ratio, %	gr./dscf Corr. to 10% O2	Total, lbs./hr	<u>lbs./hr</u>	
1	7,830	102.8	0.042	4.10	8.68	
2	7,983	101.5	0.038	3.83	8.70	
3	7,945	101.7	0.044	4.42	9.28	
Average 7,919			0.042	4.1	8.88	
lbs./hr Limitation				13.8	8.90	
MACT II Limitation			0.067			

Formula for correcting to 10% Oxygen.

$$C_s 10\% = \frac{11}{21 - \%O_2} C_s$$

III. Process Description

The stack (S12) carries exhaust gases from the Lime Kiln process (P12). During the test the Lime Kiln was operating at 220 tons per day feed rate. Cyclones, an Ahlstrom wet scrubber and Turbotek scrubber nozzles are used for emission control. Lime Kiln Production data and control equipment data supplied by Thilmany personnel is contained in the Appendix. Any additional data can be obtained from Thilmany personnel.

IV. Comments

The testing on August 28, 2010 proceeded normally with no problems that we were aware of except as noted below. To the best of our knowledge the test's results are accurate and reflect the process emissions during the test period. All leak checks, isokinetic sampling rates and calibrations were within method tolerances.

A slight adjustment downward was made to the moisture content of the stack gases on all three runs based on saturated conditions at the average stack gas temperature as described in Method 4.

The initial run one was discarded due to problems with both the Particulate and NOx sampling trains. The final leak check for the Particulate train disclosed a gross leakage. The pump used for the NOx sampling malfunctioned and had to be replaced. No other problems were encountered for the rest of the testing.

ener si											
	TH	ILMANY -	KAUKAUN	IA MILL L	IME KIL	N PM and	I NOX EMI	SSION TE	STS		
A minimizacijalizacija i su rovu oru su su su su s		PROCESS	AND SCRU	JBBER PAR	AMETER	R DATA	AUGUST 2	8, 2012	And the state of t		10000
Run No.	Start Time	End Time	Lime Mud Feed Rate	Lime Production Rate	Ahlstrom Scrubber Water Flow	Ahlstrom Scrubber Water Pressure	Turbotak Scrubber Water Flow	Turbotak Scrubber Air Pressure	Nat. Gas Flow	Lime Production Rate	
	*** **********************************		CaCO3; TPD	CaO; TPD	GPM kin-ti 1098 pv	PSIG	GPM	PSIG	SCF/HR	CaO; TPH	
Run 1	8/28/2012 10:50	8/28/2012 11:58	220.1	115.9	303.6	283.8	48.60	108.65	8in-tic_1084.pv 32093	4.83	
Run 2	8/28/2012 12:25	8/28/2012 13:27	220.0	115,9	303.4	283.7	48.61	108.69	32070	4.83	
Run 3	8/28/2012 14:00	8/28/2012 15:02	220.0	115.9	303.2	283.4	48.56	108.67	31991	4.83	
	To inches	AVERAGE	220.0	115.9	303.4	283.6	48.6	108.7	32051	4.83	*
				E 1951 E TESTAMON I				- Alle a Marie and Allegar			